Daytime Cloud Shadow Detection With MODIS

Denis GrijusicPhilipps University Marburg, Germany

Kathy Strabala, Liam Gumley CIMSS

Paul Menzel NOAA / NESDIS

Bryan BaumNASA Langley Research Center

Goal:

To use clear-sky reflectance maps to help filter clear-sky pixels that contain cloud shadows

Note: Not trying to detect cloud shadows on clouds

Approach:

Comparison of measured to clear-sky weekly composite reflectances at 1.6 µm

Data required:

- MOD021km and MOD03
- MOD35 Cloud mask
- clear-sky weekly composite (25 km resolution, 8 bands, includes 1.6 µm)

Approach

From Level1B data:

- filter out water pixels (land-water mask in MOD03)
- filter out cloud pixels (cloud mask MOD35)

Clear-Sky Weekly Composite:

• creating subset of global 1.6 µm-daytime-reflectance composite map

Algorithm:

compare reflectance of clear-sky image and level1B image set threshold as percentage of clear-sky value (e.g. 80%) pixels with values lower than the threshold are flagged as shadow pixels

MODIS-RGB-Composite of Eastern Africa (29 June2002, 07:45 UTC)

1.6- μm reflectance with water pixels filtered out of image

Study area: West Africa

MODIS-RGB-Composite of Western Africa (28 June2002, 11:50 UTC)

Clear-Sky Weekly Composite (25 km resolution)

RGB-composite of area 1

- Mauritania
- water clouds over desert
- surface has a very high reflectance
- little if any vegetation

0.65 µm-Reflectance

Clouds brighter than surface

1.6 µm-Reflectance

Surface brighter than clouds

0.65 µm-Reflectance

Shadow detection

Shadows are red

0.65 µm-Reflectance

Shadow detection (combined with cloud mask)

Shadows adjacent to clouds

RGB-composite of area 2

- Mauritania Senegal
- desert-like area
- crossed by Senegal river
- mainly ice clouds

RGB - Composite

1.6 µm-Reflectance

- shadows on eastern edge
- Senegal river not well detected by land-water mask

Shadow detection

Shadow detection (combined with cloud mask)

not detected shadows are often already detected as cloud

1.6 µm-Reflectance overview

high diversity of soil types in the north (diverse reflectance)

1.6 µm-Reflectance overview

including detected "cloud shadows"

darker parts detected as shadows

1.6 µm-Reflectance overview

including falsely detected cloud shadows and cloud mask

Cloud mask indicates that shadows are falsely detected (possibly because of coarse resolution of clear-sky reflectance map)

Spatial resolution problem

25 km - resolution Clear-sky map

1 km - resolution MOD021km (1.6 µm)

Land-water mask

Conclusion

Initial attempt to detect cloud shadows by comparing images with clear-sky composites is encouraging

Suggested improvements

- shadows should be next to clouds
- improve spatial resolution of clear-sky reflectance map
- can we find a higher resolution land/water mask?
- might improve detection of nondetected cloud shadows by checking nearest-neighbor pixels and relaxing threshold criteria

Problems:

- spatial resolution of clear-sky map
- setting threshold
- land-water mask
- cloud mask

Suggested improvements

- shadows should be next to clouds
- finding missing cloud shadows by pixel walking

Additional

Attempt to set the threshold by using histograms

Question:

Is there any "natural" threshold?

Histogram-based threshold

Ratio of measured reflectance to clear-sky reflectance

Histogram - 1.05 threshold

ratio actual value to clear-sky value

Preliminary indications

- seems that threshold could be set by use of histograms
- in this example it could be set higher than 0.8
- but... the share of false shadows might be higher
- would help to have a clear-sky map with higher spatial resolution

Additional Areas

